Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.
نویسندگان
چکیده
Pseudomonas aeruginosa is a multi-host opportunistic pathogen causing a wide range of diseases because of the armoury of virulence factors it produces, and it is difficult to eradicate because of its intrinsic resistance to antibiotics. Using an integrated whole-genome approach, we searched for P. aeruginosa virulence genes with multi-host relevance. We constructed a random library of 57 360 Tn5 mutants in P. aeruginosa PAO1-L and screened it in vitro for those showing pleiotropic effects in virulence phenotypes (reduced swarming, exo-protease and pyocyanin production). A set of these pleiotropic mutants were assayed for reduced toxicity in Drosophila melanogaster, Caenorhabditis elegans, human cell lines and mice. Surprisingly, the screening revealed that the virulence of the majority of P. aeruginosa mutants varied between disease models, suggesting that virulence is dependent on the disease model used and hence the host environment. Genomic analysis revealed that these virulence-related genes encoded proteins from almost all functional classes, which were conserved among P. aeruginosa strains. Thus, we provide strong evidence that although P. aeruginosa is capable of infecting a wide range of hosts, many of its virulence determinants are host specific. These findings have important implication when searching for novel anti-virulence targets to develop new treatments against P. aeruginosa.
منابع مشابه
Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملHigh-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa
Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for f...
متن کاملAntibiotic resistance profiles of Pseudomonas aeruginosa isolates containing virulence genes
Background: A most common opportunistic pathogen, Pseudomonas aeruginosa is present in both humans and animals and responsible for various nosocomial infections and healthcare settings related infections. Different virulence genes like; oprL (membrane lipoprotein L) and toxA (exotoxin A i.e. ETA) in P. aeruginosa, assist in its pathogenicity, toxicity and contribute to high antibiotic resistanc...
متن کاملPapaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance
A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...
متن کاملInterkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity
Pseudomonas aeruginosa is becoming recognized as an important pathogen in the gastrointestinal (GI) tract. Here we demonstrate that adenosine, derived from hydrolysis of ATP from the eucaryotic host, is a potent interkingdom signal in the GI tract for this pathogen. The addition of adenosine nearly abolished P. aeruginosa biofilm formation and abolished swarming by preventing production of rham...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental microbiology
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2015